Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Int Immunopharmacol ; 134: 112181, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733829

BACKGROUND AND AIMS: Previous reports have shown that preventing excessive intestinal epithelial cell (IEC) apoptosis is a crucial approach for protecting the intestinal barrier in patients with Crohn's disease (CD). Magnolin (MGL) has various biological activities, including antiapoptotic activities, but its role in CD has largely not been determined. This study investigated how MGL impacts CD-like colitis and the underlying mechanism involved. METHODS: Mice were treated with TNBS to establish a disease model, and these mice were used to assess the therapeutic effects of MGL on CD-like colitis. TNF-α-treated colon organoids were used to evaluate the impact of MGL on intestinal barrier function and IEC apoptosis. Enrichment analysis was performed to examine the potential pathways through which MGL inhibits IEC apoptosis. Finally, rescue experiments showed the mechanism by which MGL suppresses IEC apoptosis. RESULTS: The animal experiments demonstrated that MGL treatment alleviated the weight loss, colon shortening, elevated disease activity index (DAI) scores, increased colitis histological scores and upregulated inflammatory factor expression that were observed in model mice. MGL ameliorated intestinal barrier dysfunction and the loss of tight junction (TJ) proteins (ZO-1 and Claudin-1) by inhibiting IEC apoptosis in both TNBS-treated mice and TNF-α-treated colon organoids. MGL inhibited the PI3K/AKT signalling pathway, thus safeguarding the intestinal barrier and alleviating CD-like colitis in vivo and in vitro. CONCLUSIONS: MGL improves the intestinal barrier integrity and prevents CD-like colitis by inhibiting IEC apoptosis. The potential mechanism of its anti-apoptotic impact on IECs could be associated with the PI3K/AKT pathway, presenting novel approaches and avenues for the clinical management of CD.

2.
FASEB J ; 38(10): e23667, 2024 May 31.
Article En | MEDLINE | ID: mdl-38742812

Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.


Colitis , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Trinitrobenzenesulfonic Acid , Animals , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Janus Kinase 2/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , STAT3 Transcription Factor/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Mice , Signal Transduction/drug effects , Trinitrobenzenesulfonic Acid/toxicity , Male , Mice, Inbred BALB C , Cell Differentiation/drug effects
3.
Int Immunopharmacol ; 133: 112140, 2024 May 30.
Article En | MEDLINE | ID: mdl-38669952

BACKGROUND: Inflammation-induced intestinal barrier dysfunction is not only a pathological feature of Crohn's disease (CD) but also an important therapeutic target. Sclareol (SCL) is a nontoxic natural plant compound with anti-inflammatory effect, but its role in CD has not been established. METHODS: In vivo studies of mice with TNBS-induced colitis were carried out to evaluate the effects of SCL on CD-like colitis and intestinal barrier function. In vitro, a TNF-α-induced colonic organoid model was established to test the direct effect of SCL on inflammation-induced intestinal barrier injure and inflammatory response. The Nrf2/NF-κB/MLCK signalling was analysed to explore the mechanism of SCL. RESULTS: In vivo, SCL largely alleviated the colitis in TNBS mice, as evidenced by improvements in the weight loss, colitis symptoms, endoscopic score, macroscopic histological score, and histological inflammation score. Moreover, SCL significantly improved intestinal barrier dysfunction, manifested as reduced intestinal permeability and decreased intestinal bacterial translocation in TNBS mice. Importantly, SCL antagonised the intestinal mucosal inflammation while protecting tight junctions in TNBS mice. In vitro, SCL largely depressed pro-inflammatory cytokines levels and improved intestinal epithelial permeability in a TNF-α-induced colonic organoid model. In the context of CD, the protective effects of SCL against inflammation and intestinal barrier damage are at least partially results from the Nrf2 signalling activation and the NF-κB/MLCK signalling inhibition. CONCLUSIONS: SCL improved intestinal barrier dysfunction and alleviated CD-like colitis, possibly through modulation of Nrf2/NF-κB/MLCK signalling. In view of SCL's safety profile, there is hope that it will be useful in the clinic.


Colitis , Crohn Disease , Intestinal Mucosa , NF-E2-Related Factor 2 , NF-kappa B , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , NF-E2-Related Factor 2/metabolism , Crohn Disease/drug therapy , Crohn Disease/pathology , Signal Transduction/drug effects , NF-kappa B/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Humans , Male , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Myosin-Light-Chain Kinase/metabolism , Mice, Inbred C57BL , Permeability/drug effects , Colon/pathology , Colon/drug effects , Diterpenes/therapeutic use , Diterpenes/pharmacology , Tumor Necrosis Factor-alpha/metabolism
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 199-206, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38512029

Objective To investigate the regulatory role of natural plant compound prunetin (PRU) on the intestinal epithelial inflammation and the barrier structure in Crohn's disease-like colitis. Methods A lipopolysaccharide (LPS)-induced inflammatory injury model of colonic organoids and a 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model were established to evaluate the effects of PRU on the intestinal epithelial inflammation and intestinal barrier. In addition, network pharmacological predictions, combined with in vitro and in vivo studies, were used to analyze the molecular mechanisms by which PRU modulates intestinal epithelial inflammation and intestinal barrier in CD-like colitis. Results PRU inhibited the release of pro-inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß in LPS-induced colonic organoids, and ameliorated the colitis symptoms in TNBS-induced mice, including body mass loss, elevated disease activity index and increased inflammation scores. Meanwhile, PRU promoted the expression of tight junction proteins (ZO-1 and claudin-1) and improved their translocation restoration in LPS-induced colonic organoids and TNBS-induced intestinal epithelial cells, while maintaining the intestinal barrier structure. Mechanistically, PRU targeted the Toll-like receptor 4 (TLR4) and inhibited the activation of the TLR4/myeloid differentiation primary response gene 88 (MyD88) signaling pathway. Conclusion PRU can antagonize TLR4/MyD88 signaling, thereby inhibiting intestinal epithelial inflammation and protecting against intestinal barrier damage, which helps ameliorate Crohn's disease-like colitis.


Colitis , Crohn Disease , Isoflavones , Animals , Mice , Crohn Disease/chemically induced , Crohn Disease/drug therapy , Toll-Like Receptor 4/genetics , Myeloid Differentiation Factor 88 , Lipopolysaccharides , Colitis/chemically induced , Colitis/drug therapy , Adaptor Proteins, Signal Transducing , Inflammation/drug therapy , Disease Models, Animal
5.
J Crohns Colitis ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466138

BACKGROUND AND AIMS: Intestinal fibrotic stenosis is a major reason for surgery in Crohn's disease [CD], but the mechanism is unknown. Thus, we asked whether intestinal adipocytes contribute to intestinal fibrosis. Adipocytes were found to transdifferentiate into myofibroblasts and confirmed to be involved in mesenteric fibrosis in our recent study. Here, we investigated the role and possible mechanisms of intestinal adipocytes in intestinal fibrosis in CD. METHODS: The intestinal tissue of patients with CD with or without fibrotic stenosis [CDS or CDN] and normal intestinal tissue from individuals without CD were obtained to assess alterations in submucosal adipocytes in CDS and whether these cells transdifferentiated into myofibroblasts and participated in the fibrotic process. Human primary adipocytes and adipose organoids were used to evaluate whether adipocytes could be induced to transdifferentiate into myofibroblasts and to investigate the fibrotic behaviour of adipocytes. LPS/TLR4/TGF-ß signalling was also studied to explore the underlying mechanism. RESULTS: Submucosal adipocytes were reduced in number or even absent in CDS tissue, and the extent of the reduction correlated negatively with the degree of submucosal fibrosis. Interestingly, submucosal adipocytes in CDS tissue transdifferentiated into myofibroblast-like cells and expressed collagenous components, possibly due to stimulation by submucosally translocated bacteria. LPS-stimulated human primary adipocytes and adipose organoids also exhibited transdifferentiation and profibrotic behaviour. Mechanistically, TLR4-mediated TGF-ß signalling was associated with the transdifferentiation and profibrotic behaviour of intestinal adipocytes in CDS tissue. CONCLUSIONS: Intestinal adipocytes transdifferentiate into myofibroblasts and participate in the intestinal fibrosis process in CD, possibly through LPS/TLR4/TGF-ß signalling.

6.
Int Immunopharmacol ; 131: 111886, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38493691

BACKGROUND AND AIMS: Increased apoptosis of intestinal epithelial cells (IECs) is a significant cause of intestinal barrier dysfunction in Crohn's disease (CD). Sophoricoside (SOP) is an isoflavone glycoside known for its anti-apoptotic properties. The aim of this study was to investigate the effects of SOP on mice with CD-like colitis and to understand the underlying mechanisms. METHODS: Mice treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to examine the therapeutic effect of SOP on CD-like colitis and intestinal barrier damage. To further explore SOP's impact on IECs apoptosis and intestinal barrier protection, an in vitro colonic organoid apoptosis model induced by TNF-α was utilized. Network pharmacology was employed to predict the relevant pathways and molecular processes associated with SOP in the treatment of CD. RESULTS: Treatment with SOP significantly improved colitis symptoms in TNBS mice, as demonstrated by reductions in the Disease Activity Index (DAI), weight loss, colon shortening, macroscopic scores, colonic tissue inflammatory scores, and the expression of pro-inflammatory factors. Our experiments confirmed that SOP protects the intestinal barrier by counteracting IECs apoptosis. Additionally, this study established that SOP reduced IECs apoptosis by inhibiting the PI3K/AKT signaling pathway. CONCLUSIONS: SOP can reduce IECs apoptosis through the inhibition of the PI3K/AKT signaling pathway, thereby protecting the intestinal barrier. This study is the first to illustrate how SOP ameliorates colitis and protects the intestinal barrier, suggesting SOP has potential clinical application in treating CD.


Benzopyrans , Colitis , Crohn Disease , Mice , Animals , Crohn Disease/drug therapy , Crohn Disease/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Intestinal Mucosa , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Apoptosis , Signal Transduction , Epithelial Cells , Colon/metabolism
7.
Oncol Lett ; 27(3): 99, 2024 Mar.
Article En | MEDLINE | ID: mdl-38298425

Visceral adipose tissue and skeletal muscle mass are associated with carcinogenesis and clinical outcomes in patients with cancer. The aim of the present study was to determine the influence of body composition parameters on postoperative survival in patients with gastric cancer. Demographic data and systemic inflammatory response data were obtained from patients with gastric cancer undergoing radical gastrectomy. The patient's skeletal muscle and visceral fat were assessed using computed tomography, and the corresponding skeletal muscle index (SMI) and visceral fat index (VFI) were calculated. Univariate and multivariate analyses were then performed. Of the 342 patients from whom information was collected, 125 of these patients eventually succumbed to the disease. A total of 271 (79.24%) of the patients were male and 71 (20.76%) were female. Regarding the entire cohort, the mean age was 64 years [interquartile range (IQR), 56-74 years], while the mean body mass index collected was 21.53 (IQR, 19.27-24.22). The median SMI and VFI of the patients were 47.73 (IQR, 41.67-55.51) and 41.28 (IQR, 36.62-45.36), respectively. It was concluded that a low SMI and VFI were associated with worse survival outcomes. However, the neutrophil-to-lymphocyte ratio and perioperative blood transfusion were not significantly associated with overall survival (OS). Among the indicators assessed, a low VFI was an independent risk factor associated with the worst OS time (hazard ratio 1.59; confidence interval, 1.03-2.45; P=0.038). Finally, a prognostic nomogram was constructed which included the VFI to assist clinicians in making more informed decisions. In conclusion, after data collection and analysis, it was found that there was a significant correlation between a low VFI and a shorter OS time in patients with gastric cancer following gastrectomy, suggesting that VFI may be a promising therapeutic target for postoperative interventions to improve patient survival further.

8.
Phytomedicine ; 123: 155223, 2024 Jan.
Article En | MEDLINE | ID: mdl-38134862

BACKGROUND AND AIMS: Crohn's disease (CD) is characterized by an overabundance of epithelial cell death and an imbalance in microflora, both of which contribute to the dysfunction of the intestinal barrier. Arjunolic acid (AA) has anti-apoptotic effects and regulates microbiota efficacy. The objective of this study was to assess the impact of the treatment on colitis resembling Crohn's disease, along with exploring the potential underlying mechanism. METHODS: CD animal models were created using Il-10-/- mice, and the impact of AA on colitis in mice was evaluated through disease activity index, weight fluctuations, pathological examination, and assessment of intestinal barrier function. To clarify the direct role of AA on intestinal epithelial cell apoptosis, organoids were induced by LPS, and TUNEL staining was performed. To investigate the potential mechanisms of AA in protecting the intestinal barrier, various methods including bioinformatics analysis and FMT experiments were employed. RESULTS: The treatment for AA enhanced the condition of colitis and the function of the intestinal barrier in Il-10-/- mice. This was demonstrated by the amelioration of weight loss, reduction in tissue inflammation score, and improvement in intestinal permeability. Moreover, AA suppressed the apoptosis of intestinal epithelial cells in Il-10-/- mice and LPS-induced colon organoids, while also reducing the levels of Bax and C-caspase-3. In terms of mechanism, AA suppressed the activation of TLR4 signaling in Il-10-/- mice and colon organoids induced by LPS. In addition, AA increased the abundance of short-chain fatty acid-producing bacteria in the stool of Il-10-/- mice, and transplantation of feces from AA-treated mice improved CD-like colitis. CONCLUSIONS: The results of our study demonstrate that AA has a protective effect on the intestinal barrier in Crohn's disease-like colitis by preventing apoptosis. Additionally, this groundbreaking study reveals the capacity of AA to hinder TLR4 signaling and alter the makeup of the intestinal microbiome. The findings present fresh possibilities for treating individuals diagnosed with Crohn's disease. AA offers a hopeful novel strategy for managing Crohn's disease by obstructing crucial pathways implicated in intestinal inflammation and enhancing the gut microbiota.


Colitis , Crohn Disease , Gastrointestinal Microbiome , Triterpenes , Mice , Animals , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Interleukin-10/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Dextran Sulfate/adverse effects , Colon/pathology
9.
Int Immunopharmacol ; 127: 111367, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38160564

OBJECTIVE: Excess reactive oxygen species (ROS) generated by oxidative stress is a crucial factor affecting neuronal dysfunction after spinal cord injury (SCI). IL-11 has been reported to have antioxidative stress capacity. In the present study, we investigated the protective effect and mechanism of IL-11 against neuronal cell damage caused by oxidative imbalance. METHODS: We established a H2O2-induced oxidative stress injury model in PC12 cells and observed the effects of IL-11 on cellular activity, morphology, oxidase and antioxidant enzymes, and ROS release. Furthermore, the effect of IL-11 on apoptosis of PC12 cells was assessed by flow cytometry, a TUNEL assay and Western blotting. Transcriptome analysis and rescue experiments revealed the mechanism by which IL-11 protects neurons from oxidative stress damage. For the in vivo investigation, an adenovirus-mediated IL-11 overexpression SCI rat model was constructed to validate the beneficial effect of IL-11 against SCI. RESULTS: IL-11 significantly improved the viability and enhanced the antioxidant activity of H2O2-treated PC12 cells while reducing ROS release. In addition, IL-11 reduced H2O2-induced PC12 cell apoptosis. Transcriptome analysis revealed that the JAK/STAT pathway may be related to the antioxidant activity of IL-11. Treatment with a JAK/STAT inhibitor (Stattic) exacerbated the oxidative damage induced by H2O2 and attenuated the protective effects of IL-11. The results of in vivo studies showed that IL-11 prevented neuronal apoptosis due to oxidative imbalance and promoted the restoration of motor function in SCI rats by activating the JAK/STAT signaling pathway. CONCLUSION: IL-11 inhibited oxidative stress-induced neuronal apoptosis at least in part by activating the JAK/STAT signaling pathway and further promoted the recovery of motor function. These findings suggest that IL-11 may be an effective target for the treatment for SCI.


Signal Transduction , Spinal Cord Injuries , Rats , Animals , Janus Kinases/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Interleukin-11/therapeutic use , Interleukin-11/metabolism , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , STAT Transcription Factors/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Oxidative Stress , Neurons , Apoptosis , Spinal Cord/metabolism
10.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 721-729, 2023 Oct.
Article Zh | MEDLINE | ID: mdl-37927012

Objective To investigate the expression level of serine/threonine phosphoprotein phosphatase 4C(PPP4C)in gastric cancer,and analyze its relationship with prognosis and the underlying regulatory mechanism.Methods The clinical data of 104 gastric cancer patients admitted to the First Affiliated Hospital of Bengbu Medical College between January 2012 and August 2016 were collected.Immunohistochemical staining was employed to determine the expression levels of PPP4C and Ki-67 in the gastric cancer tissue.The gastric cancer cell lines BGC823 and HGC27 were cultured and transfected with the vector for PPP4C knockdown,the vector for PPP4C overexpression,and the lentiviral vector(control),respectively.The effects of PPP4C on the cell cycle and proliferation were analyzed and the possible regulatory mechanisms were explored.Results PPP4C was highly expressed in gastric cancer(P<0.001),and its expression promoted malignant progression of the tumor(all P<0.01).Univariate and Cox multivariate analysis clarified that high expression of PPP4C was an independent risk factor affecting the 5-year survival rate of gastric cancer patients(P=0.003).Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis suggested that PPP4C may be involved in the cell cycle.The correlation analysis showed that the expression of PPP4C was positively correlated with that of Ki-67 in gastric cancer(P<0.001).The up-regulation of PPP4C expression increased the proportion of tumor cells in the S phase,alleviated the G2/M phase arrest,and promoted the proliferation of gastric cancer cells and the expression of cyclin D1 and cyclin-dependent kinase 6(CDK6)(all P<0.05).The down-regulation of PPP4C decreased the proportion of gastric cancer cells in the S phase,promoted G2/M phase arrest,and inhibited cell proliferation and the expression of cyclin D1,CDK6,and p53(all P<0.05).p53 inhibitors promoted the proliferation of BGC823 and HGC27 cells in the PPP4C knockdown group(P<0.001,P<0.001),while p53 activators inhibited the proliferation of BGC823 and HGC27 cells in the PPP4C overexpression group(P<0.001,P=0.002).Conclusions PPP4C is highly expressed in gastric cancer and affects the prognosis of the patients.It may increase the proportion of gastric cancer cells in the S phase and alleviate the G2/M phase arrest by inhibiting p53 signaling,thereby promoting cell proliferation.


Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Cyclin D1/genetics , Cyclin D1/metabolism , Tumor Suppressor Protein p53 , Phosphoproteins/metabolism , Ki-67 Antigen , Cell Line, Tumor , Prognosis , Cell Proliferation , Phosphoprotein Phosphatases/metabolism , Threonine , Serine
11.
Exp Neurol ; 369: 114536, 2023 11.
Article En | MEDLINE | ID: mdl-37690527

BACKGROUND AND AIMS: Overexpressed MMP-9 in vascular endothelial cells is involved in blood spinal cord barrier (BSCB) dysfunction in spinal cord injury (SCI). Esculentoside A (EsA) has anti-inflammatory and cell protective effects. This study aimed to evaluate its effects on neuromotor function in SCI rats, as well as the potential mechanisms. METHODS: The therapeutic effect of EsA in SCI rats was investigated using Basso-Beattie-Bresnahan (BBB) scores, a grid walk test and histological analyses. To assess the protective role of EsA in the BSCB and in oxygen glucose deprivation/reoxygenation (OGD/R)-induced hBMECs, the BSCB function, tight junctions (TJ) protein (ZO-1 and claudin-5) expression, structure of the BSCB and Matrix metalloproteinase-9 (MMP-9) expression were observed via Evans blue (EB) detection, immunofluorescence analyses and western blotting. Molecular docking simulations and additional experiments were performed to explore the potential mechanisms by which EsA maintains the function of the BSCB in vivo and in vitro. RESULTS: EsA treatment improved BBB scores, reduced cavity formation and the loss of neuronal cells, demonstrating an improvement in motor function in SCI rats. In vivo experiments showed that EsA decreased the infiltration of blood cells and inflammatory mediators (IL-1ß, IL-6 and TNF-α) and protected the structure of TJs in the rat spinal cord and in OGD/R-induced hBMECs. EsA inhibited the activation of Toll-like receptor 4 (TLR4) signalling, which may be related to the protective effect of EsA against MMP-9-induced BSCB damage. CONCLUSIONS: EsA downregulated MMP-9 expression in vascular endothelial cells, protected BSCB function in SCI rats and attenuated TLR4 signalling and thus provide new options for the treatment of SCI.


Matrix Metalloproteinase 9 , Spinal Cord Injuries , Rats , Animals , Matrix Metalloproteinase 9/metabolism , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Toll-Like Receptor 4/metabolism , Molecular Docking Simulation , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Tight Junction Proteins/metabolism , Blood-Brain Barrier/metabolism
12.
Clin Med Insights Oncol ; 17: 11795549231175715, 2023.
Article En | MEDLINE | ID: mdl-37435016

Background: Gastric cancer (GC) is the fifth leading cancer in the world, and there is a high mortality rate in China. Exploring the relationship between the prognosis of GC and the expression of related genes is helpful to further understand the common characteristics of the occurrence and development of GC and provide a new method for the identification of early GC, so as to provide the best therapeutic targets. Methods: Vascular endothelial growth factor (VEGF) and markers of epithelial-mesenchymal transition (EMT) were investigated immunohistochemically using tumor samples obtained from 196 GC tissues and adjacent tumor tissues. The correlation of the expression level with histopathologic features and survival was investigated. Results: Here, we show that VEGF and EMT markers expression were significantly correlated with depth of tumor invasion and GC stage (P < .05), degree of differentiation and lymph node metastasis (P < .001). We found that the rate of VEGF positivity in GC tissues was 52.05%, which was significantly higher than that in adjacent cancer tissues (16.84%). In GC, the association between VEGF and E-cadherin was negative (r = -0.188, P < .05), whereas VEGF and N-cadherin were positively correlated (r = 0.214, P < .05). Furthermore, the Kaplan-Meier analysis and a Cox regression model were used to analyze the effect of VEGF and EMT marker expression on the survival of the patients. We found that the overall survival of GC patients was correlated with VEGF (P < .001), N-cadherin (P < .001), E-cadherin (P = .002) expression, and some histopathologic features. Conclusions: Vascular endothelial growth factor and EMT markers exist side by side and play a part together in the development of GC, which provides new ideas for evaluating the prognosis of GC and researching targeted drugs.

13.
Eur J Pharmacol ; 954: 175876, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37391008

BACKGROUND AND AIMS: M1 polarization of macrophages in the intestine is an important maintenance factor of the inflammatory response in Crohn's disease (CD). Eriocalyxin B (EriB) is a natural medicine that antagonizes inflammation. Our study aimed to determine the effects of EriB on CD-like colitis in mice, as well as the possible mechanism. METHODS: 2,4,6-trinitrobenzene sulfonic acid (TNBS) mice and Il-10-/- mice were used as CD animal models, and the therapeutic effect of EriB on CD-like colitis in mice was addressed by the disease activity index (DAI) score, weight change, histological analysis and flow cytometry assay. To assess the direct role of EriB in regulating macrophage polarization, bone marrow-derived macrophages (BMDMs) were induced to M1 or M2 polarization separately. Molecular docking simulations and blocking experiments were performed to explore the potential mechanisms by which EriB regulates the macrophage polarization. RESULTS: EriB treatment reduced body weight loss, DAI score and histological score, demonstrating the improvement of colitis symptoms in mice. In vivo and in vitro experiments both showed that EriB decreased the M1 polarization of macrophages, and suppressed the release of proinflammatory cytokines (IL-1ß, TNF-α and IL-6) in mouse colons and BMDMs. The activation of Janus kinase 2/signal transducer and activator of transcription 1 (JAK2/STAT1) signals could be inhibited by EriB, which may be related to the regulation of EriB on M1 polarization. CONCLUSIONS: EriB inhibits the M1 polarization of macrophages by attenuating the JAK2/STAT1 pathway, which partially explains the potential mechanism by which EriB ameliorates colitis in mice, and provides a new regimen for the clinical treatment of CD.


Colitis , Crohn Disease , Animals , Mice , Crohn Disease/drug therapy , Janus Kinase 2/metabolism , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Macrophages
14.
Front Immunol ; 14: 1126217, 2023.
Article En | MEDLINE | ID: mdl-37313408

Purpose: To explore fecal immune-related proteins that can be used for colorectal cancer (CRC) diagnosis. Patients and methods: Three independent cohorts were used in present study. In the discovery cohort, which included 14 CRC patients and 6 healthy controls (HCs), label-free proteomics was applied to identify immune-related proteins in stool that could be used for CRC diagnosis. Exploring potential links between gut microbes and immune-related proteins by 16S rRNA sequencing. The abundance of fecal immune-associated proteins was verified by ELISA in two independent validation cohorts and a biomarker panel was constructed that could be used for CRC diagnosis. The validation cohort I included 192 CRC patients and 151 HCs from 6 different hospitals. The validation cohort II included 141 CRC patients, 82 colorectal adenoma (CRA) patients, and 87 HCs from another hospital. Finally, the expression of biomarkers in cancer tissues was verified by immunohistochemistry (IHC). Results: In the discovery study, 436 plausible fecal proteins were identified. And among 67 differential fecal proteins (|log2 fold change| > 1, P< 0.01) that could be used for CRC diagnosis, 16 immune-related proteins with diagnostic value were identified. The 16S rRNA sequencing results showed a positive correlation between immune-related proteins and the abundance of oncogenic bacteria. In the validation cohort I, a biomarker panel consisting of five fecal immune-related proteins (CAT, LTF, MMP9, RBP4, and SERPINA3) was constructed based on the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. The biomarker panel was found to be superior to hemoglobin in the diagnosis of CRC in both validation cohort I and validation cohort II. The IHC result showed that protein expression levels of these five immune-related proteins were significantly higher in CRC tissue than in normal colorectal tissue. Conclusion: A novel biomarker panel consisting of fecal immune-related proteins can be used for the diagnosis of CRC.


Colorectal Neoplasms , Humans , RNA, Ribosomal, 16S/genetics , Biomarkers , Colorectal Neoplasms/diagnosis , Enzyme-Linked Immunosorbent Assay , Feces , Retinol-Binding Proteins, Plasma
15.
FASEB J ; 37(6): e22948, 2023 06.
Article En | MEDLINE | ID: mdl-37130016

Bryostatin-1 (Bryo-1) exerts antioxidative stress effects in multiple diseases, and we confirmed that it improves intestinal barrier dysfunction in experimental colitis. Nevertheless, there are few reports on its action on intestinal ischemia/reperfusion (I/R). In this study, we mainly explored the effect of Bryo-1 on intestinal I/R injury and determined the mechanism. C57BL/6J mice underwent temporary superior mesenteric artery (SMA) obturation to induce I/R, on the contrary, Caco-2 cells suffered to oxygen and glucose deprivation/reperfusion (OGD/R) to establish the in vitro model. RAW264.7 cells were stimulated with LPS to induce macrophage inflammation. The drug gradient experiment was used to demonstrate in vivo and in vitro models. Bryo-1 ameliorated the intestinal I/R-induced injury of multiple organs and epithelial cells. It also alleviated intestinal I/R-induced barrier disruption of intestines according to the histology, intestinal permeability, intestinal bacterial translocation rates, and tight junction protein expression results. Bryo-1 significantly inhibited oxidative stress damages and inflammation, which may contribute to the restoration of intestinal barrier function. Further, Bryo-1 significantly activated Nrf2/HO-1 signaling in vivo. However, the deletion of Nrf2 in Caco-2 and RAW264.7 cells attenuated the protective functions of Bryo-1 and significantly abolished the anti-inflammatory effect of Bryo-1 on LPS-induced macrophage inflammation. Bryo-1 protects intestines against I/R-induced injury. It is associated with intestinal barrier protection, as well as inhibition of inflammation and oxidative stress partly through Nrf2/HO-1 signaling.


Intestinal Diseases , Reperfusion Injury , Animals , Humans , Mice , Bryostatins/pharmacology , Caco-2 Cells , Inflammation/metabolism , Intestinal Diseases/prevention & control , Ischemia , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reperfusion , Reperfusion Injury/metabolism
16.
J Crohns Colitis ; 17(8): 1179-1192, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-36932969

BACKROUND: Hypertrophic mesenteric adipose tissue [htMAT] is a distinctive hallmark of Crohn's disease [CD], and it affects enteritis via inflammatory adipokine secretion by dysfunctional white adipocytes. White adipocytes can become beige adipocytes, which are characterized by active lipid consumption and favourable endocrine function, via white adipocyte browning. Our study aimed to determine whether white adipocyte browning occurs in htMAT and its role in CD. METHODS: White adipocyte browning was examined in MAT samples from CD patients and controls. Human MAT explants and primary mesenteric adipocytes were cultured for in vitro experiments. Mice with 2,4,6-trinitrobenzenesulphonic acid solution [TNBS]-induced colitis were used for in vivo studies. A ß3-adrenergic receptor agonist [CL316,243] was used to induce white adipocyte browning, and IL-4/STAT6 signalling was analysed to explore the mechanism underlying the anti-inflammatory activity of beige adipocytes. RESULTS: White adipocyte browning was observed in htMAT from CD patients, as shown by the appearance of uncoupling protein 1 [UCP1]-positive multilocular [beige] adipocytes with lipid-depleting activity and anti-inflammatory endocrine profiles. Both human MAT and primary mesenteric adipocytes from CD patients and controls could be induced to undergo browning, which increased their lipid-depleting and anti-inflammatory activities in vitro. Inducing MAT browning ameliorated mesenteric hypertrophy and inflammation as well as colitis in TNBS-treated mice in vivo. The anti-inflammatory activity of beige adipocytes was at least partially related to STAT6 signalling activation via the autocrine and paracrine effects of IL-4. CONCLUSION: White adipocyte browning is a newly identified pathological change in htMAT of CD patients and a possible therapeutic target.


Colitis , Crohn Disease , Humans , Mice , Animals , Crohn Disease/drug therapy , Crohn Disease/metabolism , Interleukin-4 , Adipose Tissue , Adipose Tissue, White/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Lipids
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 114-121, 2023 Jan.
Article Zh | MEDLINE | ID: mdl-36647653

Objective: To investigate the prognostic value of the expression of myeloid leukemia factor 1-interacting protein (MLF1IP) in gastric cancer tissue and its regulatory role in tumor progression. Methods: Gene Expression Omnibus (GEO) database was used to analyze the expression level of MLF1IP in tumor tissues of gastric cancer patients. Kaplan-Meier Plotter database was used to analyze the relationship between MLF1IP expression level and patient prognosis. We conducted a retrospective analysis of 108 gastric cancer patients who had undergone radical surgery at our hospital between January 2015 and December 2015. The expression of MLF1IP in gastric cancer tissue and adjacent tissues was examined. We analyzed the relationship between MLF1IP and the clinicopathological parameters of gastric cancer patients and its impact on the long-term prognosis of gastric cancer patients. Univariate and multivariate regression analyses were done to identify the risk factors affecting the long-term prognosis of gastric cancer patients. The assessment value of MLF1IP for long-term prognosis of gastric cancer was analyzed with ROC curve. The effects of MLF1IP on the proliferation, migration, and invasion of gastric cancer cells were analyzed in vitro with gastric cancer cell line (MGC803). A xenograft tumor model was established with nude mice to analyze in vivo the effect of MLF1IP on tumor growth. Results: The results of the gastric cancer cohort GSE29272 of GEO database showed that the expression level of MLF1IP in gastric cancer tissues was significantly higher than that in normal tissues ( P<0.05). Analysis with Kaplan-Meier Plotter database indicated that high MLF1IP expression was correlated with poor prognosis in gastric cancer patients. Immunohistochemical analysis showed that the expression level of MLF1IP in gastric cancer tissues was higher than that in adjacent tissues ( P<0.05). Correlation analysis showed that the MLF1IP level in gastric cancer tissue was positively correlated with Ki67 ( r=0.609, P<0.01), peripheral blood carcinoembryonic antigen (CEA) ( r=0.572, P<0.01) and carbohydrate antigen 19-9 (CA19-9) ( r=0.623, P<0.01). Kaplan-Meier (K-M) survival analysis showed that the 5-year survival rate of patients in the MLF1IP high expression group was significantly lower than that in the MLF1IP low expression group ( P<0.01). Cox regression analysis showed that independent risk factors for 5-year survival after radical gastrectomy for gastric cancer included the expression of MLF1IP ( HR=2.508, 95% CI: 1.259-4.999), CEA≥5 µg/L ( HR=2.171, 95% CI: 1.152-4.092), CA19-9≥37 kU/L ( HR=2.401, 95% CI: 1.094-5.269), and T3-T4 stages ( HR=2.779, 95% CI: 1.049-7.358) and N2-N3 stages ( HR=2.072, 95% CI: 1.100-3.904). ROC analysis showed that the sensitivity, specificity, and accuracy of MLF1IP (the cut-off value was 3.00 relative protein expression level) in assessing the 5-year survival rate after radical gastrectomy for gastric cancer was 75.00%, 76.92%, and 76.2%, respectively ( P<0.05). CCK-8, Transwell assay, and scratch assays showed that in vitro knocking down of MLF1 IP gene expression significantly inhibited the proliferation, migration and invasion of gastric cancer cells. Subcutaneous tumor xenograft experiment in nude mice showed that knocking down MLF1 IP gene significantly inhibited tumor growth. Conclusion: Increased expression of MLF1IP in gastric cancer tissue, which may be involved in the malignant activities of proliferation, migration, and invasion of gastric cancer cells, has a certain predictive value for poor prognosis.


Leukemia, Myeloid , Stomach Neoplasms , Animals , Mice , Humans , Prognosis , Carcinoembryonic Antigen , Stomach Neoplasms/pathology , Mice, Nude , Retrospective Studies , CA-19-9 Antigen
18.
Eur J Pharmacol ; 940: 175464, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36566007

OBJECTIVES: Intestinal inflammation and intestinal barrier dysfunction are two important pathological changes in Crohn's disease (CD). Sotetsuflavone (SF) is a natural monomeric herbal compound with anti-inflammatory and cytoprotective effects that is mostly nontoxic. The effect of SF on CD-like spontaneous colitis was investigated in this study. METHODS: Il-10-/- mice were used as a CD model and were administered different doses of SF. Lipopolysaccharide (LPS) plus IFN-γ-induced macrophages (RAW264.7) and a coculture system (RAW264.7 and organoids) were used in vitro. The protective effects of SF against CD-like colitis and macrophage differentiation and the mechanisms were evaluated. RESULTS: SF treatment markedly improved spontaneous colitis in the CD model, as shown by the following evidence: reductions in the DAI, macroscopic scores (3.63 ± 1.30), colonic tissue inflammatory scores (2 ± 0.76) and proinflammatory factor levels and the attenuation of colon shortening (8 ± 0.93 cm) and weight loss (1.75 ± 1.83 g). Decreased intestinal permeability and intestinal bacterial translocation rates provided evidence of the protective effect of SF on intestinal barrier function. We also found that SF suppressed M1 macrophage-induced inflammatory responses. In the coculture system of mouse colonic organoids and RAW264.7 cells, SF significantly ameliorated M1 macrophage-induced intestinal epithelial damage. In addition, SF inhibited JNK and MAPK (p38) signalling in both Il-10-/- mice and LPS plus IFN-γ-induced macrophages (RAW264.7). CONCLUSIONS: The protective effects of SF against CD-like colitis may be achieved partially by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and p38 signalling. SF may have therapeutic potential for treating CD, especially considering its safety.


Colitis , Crohn Disease , MAP Kinase Signaling System , Animals , Mice , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colon/pathology , Crohn Disease/drug therapy , Cytokines/pharmacology , Dextran Sulfate/adverse effects , Interleukin-10 , Lipopolysaccharides/adverse effects , Macrophages , Mice, Inbred C57BL
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(6): 886-896, 2023 Dec 30.
Article Zh | MEDLINE | ID: mdl-38173098

Objective To investigate the expression and prognostic significance of mediator complex subunit 8 (MED8) in gastric cancer and its impact on the cell cycle.Methods The expression of MED8 in gastric cancer and adjacent tissues and its correlation with patients' prognosis were analyzed using public databases.A validation cohort of 104 patients who underwent radical resection for gastric cancer in the First Affiliated Hospital of Bengbu Medical College from June 2012 to July 2017 was included.The receiver operating characteristic curve was established to evaluate the predictive value of MED8 for postoperative 5-year survival.Bioinformatics tools were used to predict the biological roles of MED8 in gastric cancer.The effect of the MED8 level on the G1/S phase transition of gastric cancer cells (MGC-803) was analyzed via lentivirus transduction and flow cytometry.Western blotting was carried out to assess the impact of MED8 expression on the protein levels of cyclin-dependent kinase 4(Cdk4) and G1/S-specific cyclin-D1(CyclinD1) in MGC-803 cells.Results The high expression of MED8 in the gastric cancer tissue was associated with poor prognosis (P<0.001) and had prognostic significance (area under curve=0.733,P<0.001).Gene enrichment analysis suggested that MED8 may participate in the cell cycle process.Flow cytometry results revealed that the upregulation of MED8 expression promoted the transition of MGC-803 cells from the G1 phase to the S phase (P<0.001),while the downregulation of MED8 had the opposite effect (P<0.001).Western blotting showed increases in the protein levels of Cdk4 and CyclinD1 in MGC-803 cells with upregulated MED8 expression (all P<0.001),and decreases in the cells with downregulated MED8 expression (all P<0.001).Conclusion MED8 is highly expressed in gastric cancer and may affect its progression and prognosis by regulating the G1/S phase transition of gastric cancer cells.


Stomach Neoplasms , Humans , Prognosis , Cell Proliferation , Cell Cycle , Mediator Complex/metabolism , Cell Line, Tumor
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1167-1175, 2023 Nov 20.
Article Zh | MEDLINE | ID: mdl-38162070

Objective: The study was conducted to investigate the expression of protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) in gastric cancer and its effect on the prognosis, and to analyze its potential mechanism. Methods: UALCAN, a cancer data analysis platform, was used to conduct online analysis of the expression of PCMT1 in gastric cancer tissues. Through the Database for Annotation, Visualization and Integrated Discovery (DAVID), Gene Ontology (GO) annotation and signaling pathway enrichment by Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyze the possible functions and signaling pathways. A total of 120 patients who underwent radical gastrectomy for gastric cancer between January 2014 and December 2017 in our hospital were enrolled for the study. Immunohistochemical staining was performed to determine the expression of PCMT1 and Ki67 in gastric cancer tissues. Cox regression, Kaplan-Meier curve, and receiver operating characteristic (ROC) curves were used for prognostic analysis of 5-year survival in gastric cancer patients after surgery. Lentivirus was used to construct PCMT1-interfering or PCMT1-overexpressing vectors, which were then used to transfect human gastric cancer cell lines of MGC-803 and HGC-27 cells. The interfering empty vector (sh-NC) group, the interfering PCMT1 vector (sh-PCMT1) group, the overexpressing empty vector (LV-Vec) group, and the overexpressing PCMT1 vector (LV-PCMT1) group were set up. Western blot was performed to determine the protein expression levels of PCMT1, CyclinB1, and CDC20. CCK-8 assay was performed to measure the proliferation of gastric cancer cells. Flow cytometry was performed to determine the cell cycle. MGC-803 cells were injected in four groups of nude mice to construct a subcutaneous xenograft tumor model, with three nude mice in each group. The body mass of the nude mice was measured. The nude mice were sacrificed after 14 days and the tumor volume was monitored. The expression levels of CyclinB1 and CDC20 proteins in the tumor tissues were determined by Western blot assay. Results: Analysis with UALCAN showed that PCMT1 was highly expressed in gastric cancer tissues. Moreover, elevated expression was found in gastric tumor tissues of different pathological stages and grades and those with lymph node metastasis (P<0.05). GO and KEGG enrichment analyses showed that PCMT1 was mainly involved in the signal regulation of mitosis, spindle assembly checkpoints, and cell cycle. The immunohistochemical results showed that PCMT1 and Ki67 were highly expressed in gastric cancer tissues and that they were positively correlated with each other (P<0.05). Cox multivariate analysis showed that high PCMT1 expression (hazard ratio [HR]=2.921, 95% confidence interval [CI]:1.628-5.239) was one of the independent risk factors affecting the 5-year survival rate of gastric cancer patients after surgery. Kaplan-Meier curve showed that patients with high PCMT1 expression had a lower 5-year survival after surgery (16.7%, HR=4.651, 95% CI: 2.846-7.601) than patients with low PCMT1 expression (70.0%, HR=0.215, 95% CI: 0.132-0.351) did. The ROC curve showed that PCMT1 had an area under the curve (AUC) of 0.764 (95% CI: 0.674-0.854) for predicting 5-year patient survival after surgery. Western blot results showed that lentiviral interference or overexpression of PCMT1 cell lines was successfully constructed. The results of CCK-8 showed that the proliferative ability of MGC-803 and HGC-27 cells was weakened with the downregulation of PCMT1, and the overexpression of PCMT1 promoted cell proliferation (P<0.05). With the interference of PCMT1, the expression of CDC20 protein was decreased, the expression of CyclinB1 protein was increased, and the cell cycle was arrested in the G2/M phase. In contrast, the overexpression of PCMT1 led to the opposite trends (P<0.05). In the sh-PCMT1 group, the tumor volume and mass were decreased and the expression of CDC20 protein was decreased and the expression of CyclinB1 protein was increased in the tumor tissues of the nude mice (P<0.05, compared with those of the sh-NC group. In contrast, the LV-PCMT1 group showed the opposite trends (P<0.05, compared with those of the LV-Vec group). Conclusion: The high expression of PCMT1 in gastric cancer tissues is associated with poor prognosis in patients and may affect tumor cell malignant proliferation via regulating spindle checkpoints in the process of mitosis.


Stomach Neoplasms , Animals , Mice , Humans , Prognosis , Stomach Neoplasms/pathology , Mice, Nude , M Phase Cell Cycle Checkpoints , Ki-67 Antigen , Sincalide/genetics , Cell Cycle Proteins/genetics , Cell Proliferation , Cell Line, Tumor , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics
...